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Abstract. We study the semiclassical limit of low lying states in a multiwell potential by 
rigorous perturbative techniques. In particular we obtain in a simple way tunnelling 
instability and localisation of wavefunctions under small deformations of symmetric poten- 
tials. 

1. Introduction 

Problems of resonant states have acquired a considerable importance in the recent 
literature in mathematical physics. There are both mathematical and physical reasons 
for this trend. From the mathematical point of view the study of resonant states or 
tunnelling leads to a singular perturbation problem as it requires the solution of the 
Schrodinger equation for small values of the coefficients multiplying the kinetic energy, 
i.e. the highest derivative in the equation. Physicists call it the semiclassical limit. 
Only very recently were sufficiently powerful techniques developed to deal satisfactorily 
with such a problem (see e.g. Helffer and Siostrand 1983). From the physical standpoint, 
understanding tunnelling appears as a central issue in the study of quantum disordered 
systems, in particular in the description of the metal-insulator transition. The control 
of tunnelling is a key point in the recent analysis by Frohlich and Spencer (1983) of 
the Anderson model for such a transition. Also molecular physics seems to require a 
deep understanding of the semiclassical limit to solve some of its basic issues, e.g. the 
compatibility of the traditional concept of molecule, as used by chemists, with quantum 
mechanics (Claverie and Diner 1980). Strangely enough, after almost sixty years of 
quantum mechanics this question is still considerably obscure. Localisation of 
wavefunctions seems to play an important role here too. Let us mention in passing a 
growing branch of solid state physics which presumably will need a serious theoretical 
command on tunnelling problems in the near future: the physics of superlattices (for 
an informal exposition see Dolher (1983)). 

The tunnelling situations considered for a long time in the physics literature were 
characterised by the existence of symmetries. Typical is the treatment of the double 
well in the book of Landau and Lifshitz or the solution of simple problems exhibiting 
band structure in solid state physics. All this is reflected also in the first rigorous 
papers devoted to the problem which consider only symmetric potentials (Harrell 1978, 
1980). As far as non-symmetric situations are concerned it has long been known that 
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if in a symmetric double well the curvature of one of the minima is changed, tunnelling 
disappears and the wavefunction is completely localised in the minimum of smaller 
curvature. This case can be easily understood by simple min-max arguments. 

What is much more difficult is to control what happens when symmetry breaking 
takes place far from the minima or on a small scale compared with the extension of 
the region over which tunnelling is effective in the symmetric non-perturbed situation. 
The latter case typically arises when we consider the effect of an impurity in a perfectly 
periodic and symmetric structure. The first investigations of non-symmetric situations 
led to the surprising conclusion that tunnelling is very sensitive to perturbations of the 
kinds described above. In fact it was proved in Jona-Lasinio et a1 (1981a, b)  that 
localised perturbations far from the minima are sufficient to produce exponential 
localisation of the wavefunctions and variations of the level splittings which are 
exponentially large if compared with the symmetric splitting. 

In other words tunnelling in stationary states is a highly unstable phenomenon. 
The mathematical techniques by which these results were obtained are somewhat 
exotic: they rely on probabilistic ideas which are not part of the usual way of thinking 
of the theoretical physicist. 

In the present paper we rigorously show that perturbation theory is sufficient to 
understand the main features of tunnelling instability. It may be useful to compare 
briefly the two approaches. The techniques used in Jona-Lasinio et a1 (1981a, b) permit 
a very detailed analysis of the problem which is not based on a previous knowledge 
of the symmetric case. Actually they constitute a self-contained approach to the 
semiclassical limit in a wide spectrum of situations. They are in principle applicable 
in any dimension although in dimension greater than one they may not be so viable. 
The perturbation approach proposed here requires a previous knowledge of the 
symmetric case and can deal only with perturbations which are small on a scale 
depending on fi. However, the latter is not a real limitation because we are in fact 
interested in knowing which are the smallest perturbations which can destabilise 
tunnelling. Furthermore, besides its conceptual simplicity, perturbation theory does 
not present additional conceptual difficulties when the space dimension is greater than 
one. 

In the present paper our considerations are limited to one-dimensional examples 
(for concreteness one may think of long molecules) but it is quite clear, especially in 
view of the results of Simon (1984a, b) which extend the one-dimensional eigenfunction 
estimates of Harrell ( 1978, 1980) to any arbitrary finite dimension, that dimensionality 
does not play any essential role. 

The basic content of the paper is the following. We consider a potential periodic 
over a finite segment, locally perturbed by a C” potential as indicated in figure 1. 

The perturbation A V  may be negative (full curve) or positive (dotted curve). The 
lowest band of the symmetric unperturbed potential is given by a set of N levels ( N  
is the number of minima) exponentially close to each other and to the ground state. 
The exponential order of magnitude of the splitting is e-**’*, A = ,,“ V(x)’I2 dx. The 
corresponding eigenfunctions are equally distributed over the different minima, 

We take the perturbation A V  smaller than the distance between the lowest band 
and the next one, i.e. AV<o(fi), for example AV=o(fi*). We then show that as far 
as the lowest band is concerned we can approximately diagonalise the perturbed 
Hamiltonian Hsym +AV on the localised Wannier functions associated to the lowest 
N eigenstates. The largest matrix elements involved are typically of the order e-”’*, 
B = jr2 V ( X ) ” ~  dx, which is also the order of magnitude of the largest splitting involved. 



Tunnelling instability via perturbation theory 2937 

t 

7 /- 

J 

Figure 1. 

Besides the exponential change in the splitting magnitude we find that the ratio 
between the value of the perturbed ground state wavefunction in the perturbed well 
and the value in any other one is of order e(A-B)/h if AV < 0. The same conclusion 
holds for the highest state of the band if AV > 0. 

We would like to conclude this introduction with a general comment. The develop- 
ment of techniques capable of dealing with non-symmetric tunnelling situations seems 
especially important as the functional integration techniques based on the instanton 
idea so popular in contemporary physics (Coleman 1977) have so far proved ineffective 
in approaching such problems. 

The reason seems to be that a control is needed of the functional integral over an 
infinite time and the T + CO limit cannot be interchanged with the h + 0 limit. In other 
words stationary action techniques work well in finite time intervals and extend to 
infinite time only under special symmetry conditions. 

2. Perturbation of a symmetric multiwell potential 

We consider in this section a potential x +  V ( x )  periodic over the finite interval 
( -2N5~,2N?r ) ,  N positive integer, having 2 N  quadratic minima at x = * x k ,  xk = 
(2k - 1 ) r ,  k = 1, . . . , N. We assume furthermore V(*x,)  = 0, and we take for con- 
venience N = 2p, p = 0, 1 . . .. 

Specifically, the function x + V ( x )  can be constructed as follows: let x + F ( x )  E C" 
[-T, 771, ~ ( x )  20, ~ ( x )  = F ( - x ) ,  limx+o F ( x ) x - ~  = w 2 >  0, ~ ' ( x )  = o iff x = 0, x = *T. 
Then x-+ V ( x )  is defined by 

( 1 )  V ( X )  = F(x-Xk) ,  2 ( k -  1 ) ~ s  ~ ~ 2 k 5 ~ ,  1 S k C  N, 
( 2 )  V ( x ) =  V ( - x ) .  

We denote by Ho the Schrodinger operator h2p2 + V ( x ) ,  acting in L 2 ( - 2 N r ,  2 N r )  
defined on D ( p 2 )  with periodic boundary conditions at x = * 2 N r .  Its well known 
relevant properties are collected in the following statement whose proof is briefly 
recalled in the appendix. 

Proposition 2. I. Let Ho = Ho( h)  be as above. Then: 
(1) Ho(h)  is self-adjoint and strictly positive. 
( 2 )  Ho( h )  has discrete spectrum, consisting of countably many simple eigenvalues 

0 < p , ( h )  < k2(h) . . . t +CO. For h suitably small, there are Cy > 0, Cy > 0 such that 

c;n < < CYh, i = 1,2, . . .. 
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(3) Consider the set B ( h )  = { p i ( h ) :  i = 1, . . . , 2 N }  hereafter referred to as 'the 
band'. Then there is ei(h)LO as h+O such that the splittings Apik(h)= 
p i ( h )  - pk(h) ,  i, k = 1, . . . ,2N,  fulfil the estimate 

~ X P [  - (2A + ~i )/hI < IAkik(h)( < exp[ - (2A - ~ i ) / h I ,  (2.1) 

A = 1: V(x)'/' dx. 

Furthermore, the isolation distance of the band from the rest of the spectrum of 
Ho(h):  d(h)  = Ipl(h) - p,(h)I is bounded below, d(h)  > Ch, for some C > 0, 
h suitably small. 

(4) Let +,(x, h) ,  i = 1, . . . ,2N,  be the band eigenfunctions. Then +l(x, h )  E C"(R) 
and for h suitably small l+l(x,h)l has approximately equal maxima at x =  *xk, k =  
1 , .  . . , N, i.e. there is 7 = q(h)LO as h+O such that, if 1 1 + 1 1 1  = 1, i =  1, .  . . , 2 N :  

1 - 7 < I + ~ ( * X k l , h ) / + , ( * X k 2 ,  h)l< 1 +7, k,, k, = 1, . . . , N ;  i, j = 1, , . . ,2N.  

(5) There is a unitary 2 N x 2 N  matrix U=(C, , ) , .=~  2N,1~ ln l= (2N) - ' / 2 ,  such 
that the function f ; ( x ,  Sl) = C,kt,bk+k(X, h )  is concentrated (for h suitably small) near 
the ith minimum XI = x,, i = 1,.  . . , N ;  XI = - x , - ~ ,  i = N + 1, .  . . ,2N.  By this we mean 
that there are O<a<&,  O<q(h)<h",  such that, for r > y ,  =x- . f l>  q(h )  (and 
analogously for -n < y ,  < - q ( h ) )  and some E ( A ) & O  as hJO, 

<Ix(x,h)l <exp[-(A-~)/h]exp( {'V(r)l/'dr/h) i =  I ,..., 2N, (2.3) 
Y ,  

while for lyl12 n 

IA(x, 5111 < exp[ - (A - & ) / A l .  (2.4) 

Let us now introduce a localised perturbation in the first well (i t  is of course irrelevant 
to consider it in any other well). Let therefore x+AV(x)  be in C;P((O,2r) \ ( r -  
q(h) ,  n + q ( h ) ) .  Fordefinitness we takesuppAV=(a, ,  a , ) , O < a , < a , < r - q ( h ) , a n d  
AV of constant sign, A V > 0 or A V < 0, x E (a , ,  a2). Then we have the following obvious 
estimate. 

Lemma 2.2. Let A h  =(A, AV'), and E = ~ ( h )  be as above. Then for any 7 small 
enough, a, - a ,  > 7l > 0, there is 7 = ~ ( h )  + 0 as hi0 such that 

where 

B = 1: V(x)'/' dx, V(x)'I2 dx. 
~ 2 - 7 1  
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Proof: We compute A Y j  =JI: AV(x)f;(x)J(x) dx. By (2.3): 

2939 

exp[-2(A + ~ ) / h ]  J a z  I A  ~ ( x ) j e x p (  2 J: V ( ~ ) I / ~  dt /h)  d x  
01 

<lAVl,I  <exp[-2(A-~)/h]  lAV(x)/exp(2 V(t)L/2dt /h)  d x  I:’ 
(2.7) 

whence 

Denote now by H the Schrodinger operator Ho+AV, defined on D(Ho) .  Since the 
multiplication by AV is bounded as an operator in L2(R),  it is bounded also with 
respect to Ho with relative bound zero. Hence (see e.g. Reed and Simon (1975-8), 
theorems X.12, XII.8, XIII.14) H is self-adjoint, bounded below, has discrete spectrum 
and the eigenvalues of Ho are stable with respect to the perturbation AV (the technical 
definition is recalled below). The strength of the perturbation is measured by 11 AV//, = 
maxa,s,sa2 IAV(x)l= b. The most interesting case is clearly b arbitrarily small: accord- 
ingly we take b of order d 2 ,  where d = O(h) is the isolation distance of B ( h )  from 

( HO) \ B (h ) .  

We can now state our first result, i.e. the exponential instability of the eigenvalue 
splitting. 

Proposition 2.3. There is S > 0 such that, for all 0 < h < 8: 

IEi(h) - pj(h)l  S Cub, i, j = 1, . . . ,2N, for some Ci,j > 0 independent of h. 

and let 
there is E ~ ( ~ ) J O  as hJ0 such that 

( 1 )  The operator H has exactly 2 N  eigenvalues Ei(h) ,  i = 1, . . . ,2N,  such that 

(2) Let E,(h)  =maxlsisZN E i ( h )  for AV>O, El(h)=minls iszN E i ( h )  for AV<O, 
= Ei(h) - &(h), i # k = 1, .  . . ,2N.  Then for b < i d ,  B and B, as above, 

exp[-2(Bl + & ) / A ]  < l A E l , k l <  eXp[-2( B - E ) / h ] .  (2.8) 

Remark. This is exactly the result of Jona-Lasinio et a1 (1981a,b). It shows the 
exponential instability of the tunnelling because A > B, B B, and E ~ ( ~ ) J O  as hJO. Let 
us first prove the following auxiliary statement. 

Lemma 2.4. Let r be the circle { z E C :  l z - p , ( h ) l = t d ) .  Let R ( Z , H , ) = ( H ~ - Z ) - ~ ,  
z E a( Ho),  be the resolvent of Ho, and let, for z E r, 

Q1 (z) = - ( A  VR( Z, HO))*( 1 + A  VR( Z, Ho))-’ ,  

QZ(Z) = -HoR(z,  H o ) Q , ( z )  
(2.9) 
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Then if b < fd we have 

(2.10) 

(2.11) 

(2.12) 

2 N  

zsr , = I  
sup I(f;, Q2( z)fk) < 8 d -2(2N)-1 2 pj ( 1 - 2 b/ d ) - '  bl A Vii I 1/21A VI 1 I" 

whenever i # 1. (2.12) and (2.13) hold also with i interchanged with k. 

(2.13) 

Proof: Let us first recall that SUPzer IlAVR(z, Ho)II s b SUPzcr (IR(z, Ho)I1=2bd-'. 
Hence the geometric series Z:=o IlAVR(z, Ho)IIn is norm convergent to ( 1  + 
AVR(z, Ho))- l ,  which is therefore bounded by ( 1  -2bd-')-I. Hence 

< 2d-'llA Vfl /I( 1 - 2bd-')-' SUP IIA VR(z, H0)fI / /  
zer 

<2d- ' ( l  -2bd-')-'IIAVfl112~~p AvC cikekj(pk-z)-IXl( 

s 4( 1 - 2 bd - ) - I 11 A Vfl (1 
zcr I1 b 

because llAVfk 11 < [ ( A  VfI 1 1  for h small. Here of course ( ejk);& I = U- ' ,  ej,k = 
*(2N)-1'2. Now IlAVf11/2=J> JAV121fl12 d x s  blAVllI, whence (2.10). (2.11) is proved 
in the same way, and so are (2.12), (2.13), with the obvious modification 
\ \ A  Vf; / /  / / A  Vfl /I s b1/2)A Vii/1/2b1/21A VI 

Proof ofproposition 2.3. Statement ( l ) ,  i.e. the stability of the band eigenvalues, is a 
well known consequence of regular perturbation theory fsee e.g. Kat0 (1966, ch 11, 
VII) or Reed and Simon, (1975-8, XII. 1,2). To see (2), first recall that the strong 
Riemann integral (Kato 1966, p 67) 

Po = (27i-i)-' R(z, Ho)  dz, 
Jr 

r as in 2.4, defines the orthogonal projection on X2N,  the 2N-dimensional subspace 
spanned by the band eigenvectors . . , ( L 2 N .  A basis in X2N is equivalently given 
by {f;}f=",. As proved in lemma 2.4, the resolvent R ( z ,  H )  is bounded uniformly in 
z E r, and hence the strong Riemann integral 
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exists and defines the orthogonal projection on the 2 N-dimensional subspace spanned 
by the eigenvectors {+,}f=", corresponding to the eigenvalues {E,}fcl of H. These 
eigenvalues of course coincide with the non-zero eigenvalues of the 2 N-rank operator 
PHP = HP = PH. Expand now HP in powers of A V  up to first order and keep the 
remainder: 

HP=(Ho+AV)P=(Ho+AV)(2~i)-1 

= Ho(2ai)-' R(z, Ho) dz-H0(27ri)-' R(z, Ho)AVR(z, Ho) dz I, 
+AV(27ri)-I R(z, Ho) dz+(2r i ) - I  Ql(z) dz 

+(27ri)-' Q2(z) dz. 

The 2N-rank operator HP can be represented by the matrix T = ((5, H p f k ) ) i ,  k =  I , ,  , . 2~ 

on the unperturbed basis {A>?=", ( { A }  is obtained from { J l i }  through a unitary transforma- 
tion). We then have, integrating by the residue method the terms up to first order and 
taking the scalar products, 

where 
T =  T o + T l + R l + R 2  

We have of course 

(2.15) 

l(A, Hofk)l < exp[-2(A- el)/h], 

by (2.2), (2.4). To has of course eigenvalues p l , .  . . , p 2 N  and the corresponding 
eigenvectors are {el,i}ffl, . . . , {e2N,i}:c1. The first-order eigenvalues are those of To + TI, 
and the exact ones those of T. We now have 

TII = (1/2N) Tr To+AVll + ( R I ) I I  + ( R J l l .  
By lemma 2.4 

( A  VI 1 - 4 bd-2[ 1 + 2% To( 2 N d ) - l (  1 - 2 bd-')-']} S (A  VI + (RI)  I I + ( R  I I + ( R2)  I I )  

s 1 A VI I I { 1 + 4 bd -'[ 1 + 2Tr To( 2 Nd ) -' ( 1 - 2 bd -')-I]} 

whence, by (2.5), 

exp[-2(Bl + 77)/h]{l -4bd-2[1 +2TrT0(2Nd)-'](1 -2bd-')-'} 

~ I A V I I  +(Rl) l l  +(R2)11l 

sexp[-2(B- 77)/h]{l +4bd-2[1 -2Tr T0(2Nd)-I(1 -2bd-')-I]}, 
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On the other hand, by (2.6) and lemma 2.4 we have, for i # 1 or k # 1, 

lAKk +(RI)!,,  + ( R 2 ) r h l s { l  +4bd-2[1 +TrTo(2Nd)- '( l  -2bd-')-']} 

x exp[ - (A + B - 277)/h]. 

The matrix elements Tik, i # 1 or k # 1, are thus exponentially small with respect to 
J A V l l + ( R l ) l , + ( R 2 ) l l (  because B < B , < A  and we can tzke B , < ( A + 8 ) / 2 .  It is 
therefore immediately seen that (2.8) holds. 

The exponential localisation of the wavefunction is now expressed as follows. 

Corollary 2.5. Let +I(x,  h )  = X i N I  plkfk(x) be the eigenfunction corresponding to the 
eigenvalue E , ( h ) .  Then for any given S > 0, and for h suitably small there is &(h)&O 
as hJO such that, for all k # 1, 

(2.16) 

is the eigenvector corresponding to E l ( h ) ,  

/ P l k / P I I I  <exp[-(A- B - 8  -2&)1* 

Proof, The 2N-vector p = (pI1, .  . . , 
i.e. the solution of the homogeneous system 

( T  - El(h)Z)@ = O  

where Z is the identity 2 N  x 2 N  matrix, and we can take p I I  = 1. Now, as above, we 
see that J J R I / J  =O((b /d2)JAVl ,J ) ,  ) )R2JJ =O((b/d*)JAV,,J)  and, consequently, 

Ei(h) = E\"(h) +O((b/d2)IAViiI), (2.17) 

E\"(h) being the first-order eigenvalue, i.e. the eigenvalue of To + TI nearest to E , ( h ) .  
By lemma 2.2, 

E \ ' ) ( h )  = (2N)-'TrTO + A  VI I +O(exp[ - (A + B -2&)/h]). (2.18) 

On the other hand 

P l , k  = MkA- ' ,  A = det( Tk  - E,(h)S, ,) ,  i, k = 2  , . . . ,  2N, 

Mk =det  T i ,  T ;  being the matrix obtained by ( T k  - E l ( h ) S , k ) ,  i, k = 2 , .  . . ,2N,  
replacing the kth column by -Tz,, i = 2, .  . . ,2N.  Now, as above, we have 
ITkl <exp[-(A + B - 2 ~ ) / h ]  if i # k, and exp[ -2(Bi - ~ ) / h ] s  lTkk - El(h)l 
exp[-2(B - ~ ) / h ]  for k = 2 , .  . . , N. Hence by (2.5), (2.6), (2.10), (2.1 l ) ,  (2.13) we easily 
compute 

A-' i exp[(2N - 1)(2BI - 2 ~ ) / h ] ,  

Mk seXp[- (2N-2)2(8-  &) /h- (A +B-2&)/h]  

whence (2.16) with 6 = (4N-2)(B,  - B ) .  

Remarks 
( 1 )  The above argument can be easily repeated to show that the eigenfunctions 

42,. . . , 4 ~ ~ ~  corresponding to the eigenvalues E,(h), . . . , E 2 , ( h )  are concentrated 
outside the first well. 

(2) The eigenvalue E l ( h )  is the ground state only if A V <  0. Therefore we see that 
the ground state is concentrated in the first well only in this case. 

(3) Proposition 2.3 and corollary 2.5 hold true without change for Ho(Zz)= 
h2p2+ V(x) acting in L2(W), V(x)  being any symmetric double well potential; i.e. 
V(x)  E C"(W) fulfils conditions (1)-(2) above and V(X)?CO monotonically as x > 2 ~ .  
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Appendix 

Let us briefly review for the convenience of the reader the relevant literature in which 
the proof of proposition 2.1 can be found. Assertion ( 1 )  is well known; for a proof 
see e.g. Reed and Simon (1975-8, theorem X.12). Assertion (2): for the discreteness 
of the spectrum, see e.g. Reed and Simon (1975-8, theorem XIII. 67): the bound 
C : h s  C:’h is an easy consequence of the min-max principle (see e.g. Reed and Simon 
(1975-8, theorem XIII. 1 ) )  and Temple’s inequality (Reed and Simon 1975-8, theorem 
XIII.5) because the potential is non-negative with a finite number of quadratic zeros. 
A convenient choice of trial functions is provided by smooth matchings of harmonic 
oscillator eigenfunctions in each single well. To see ( 3 ) ,  (4), ( 5 ) ,  consider first remark 
(3), i.e. the double well. In this case (2.1) and (2.2), i.e. assertion (3), follow from 
results of Harrell (1980, 5 111) through the rescaling x + f ~ ” ~ x ,  E + ~ h - ” ~ ,  for p = h2, 
and through the asymptotic approximation 

p ( X ) - / L p 2 -  V(x)’/2+O(AI’2). (A1 1 
Assertion (4) follows by Harrell (1980, theorem 1.12), of course up to the above 
rescalings. Assertion ( 5 )  is once more proved in Harrell (1980, theorem 1.12, § 111) 
up to rescaling and (Al)  approximation. We also note that assertions (2) and (3) can 
be extracted from general results of Simon (1983). 

To see (3), (41, ( 5 )  in the general case with periodic boundary conditions, remark 
that the Bloch representation and the 4 NT periodicity immediately yields the following 
classification (according to non-decreasing energy) for the band eigenfunctions: 

$ , (XI  = uo(x), 

(L2m(x) = e x p ( i m x / 2 N ) ~ , , , , ~ ~  (XI,  

( L 2 m + l ( ~ )  = exp(-imx/2n)um,2,(x), 

(Lz N ( X )  = sin( x/2)  U ,  1 2(x 1, 
m =  1, .  . . , N -  1, (A21 

where uk(x),  Os k s ; ,  is a real-valued even function of period 2~ which has no zeros. 
The complex conjugate eigenfunctions (L2,,,(x), (L2,,,+,(x), m = 1, . . . , N -  1, correspond 
to degenerate eigenvalues (see e.g. Reed and Simon (1975-8), theorem XIII. 91). The 
real-valued linear combinations ( m  = 1, . . . , N - 1) 

4 2 m  ( X I  = sin( mx/2N) U m I Z N  (XI, 
m odd, (A3) 

4 2 m  + I  ( X I  = COS( mx/2 N )  U m / 2 N  (x),  

fulfil periodic or antiperiodic boundary conditions at x = 2 NT and can be considered 
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as the top and bottom states of the mth and ( m  + 1)th band, respectively, generated 
by the Schrodinger operator h2p2 + V ( x )  considered as an operator in L2(Iw) with a 
potential periodic of period 2 N r .  Recall that in this case (Reed and Simon 1975-8, 
theorem XIII.91) all gaps between the periodic and antiperiodic states defined by (A3) 
and (A4) are absent. 

Therefore assertions (3), (4), ( 5 )  of proposition 2.1 follow directly from the estimates 
of Harrell (1979) of course up to the above rescaling and to the translation x x - r. 

Note added in proof: After submitting this paper for publication we received a preprint by Helffer and 
Sjostrand ‘ h i t s  Multiples en Limite Semiclassique-11’ where applying the techniques of Helffer and 
Sjostrand (1983) they reobtain and generalise the results of Jona-Lasinio et a1 (1981). Their paper also 
covers the situation described in the present article. 
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